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A two-step method for pose estimation based on five co-planar reference points is studied. In the first step,
the pose of the object is estimated by a simple analytical solving process. The pixel coordinates of reference
points on the image plane are extracted through image processing. Then, using affine invariants of the
reference points with certain distances between each other, the coordinates of reference points in the camera
coordinate system are solved. In the second step, the results obtained in the first step are used as initial
values of an iterative solving process for gathering the exact solution. In such a solution, an unconstrained
nonlinear optimization objective function is established through the objective functions produced by the
depth estimation and the co-planarity of the five reference points to ensure the accuracy and convergence
rate of the non-linear algorithm. The Levenberg-Marquardt optimization method is utilized to refine
the initial values. The coordinates of the reference points in the camera coordinate system are obtained
and transformed into the pose of the object. Experimental results show that the RMS of the azimuth
angle reaches 0.076◦ in the measurement range of 0◦–90◦; the root mean square (RMS) of the pitch angle
reaches 0.035◦ in the measurement range of 0◦–60◦; and the RMS of the roll angle reaches 0.036◦ in the
measurement range of 0◦–60◦.

OCIS codes: 150.0155, 140.1135, 330.4060.
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Pose estimation, which can be widely applied in the
fields of robot navigation[1], light pen measurement[2],
electro-optic aiming[3,4], vehicle quality inspection[5], and
aerospace science[6−8], among others, has an important
value. Research in this area has been more active in re-
cent years. The existing approaches to generate solutions
fall in two distinct categories: analytical solutions and it-
erative solutions. Earlier studies have proved that four
reference points can achieve a linear solution, but four
points may yield more than one solution[9−11]. Tang et al.
presented a linear algorithm with under condition of five
feature points[12]. DeMenthon et al. proposed a POSIT
algorithm, which obtains the initial value of the solution
using the scaling and orthography projection model to
approximate the perspective projection model[13]. Zhang
et al. estimated an object pose based on geometrical
constraints[14]. Chen et al. solved the rotation and trans-
lation matrix using the least squares method according
to orthonormal constraints; the method used has many
points (10×10)[13]. Wang et al. achieved the object pose
non-linearly on the basis of five reference points using
the least squares approach. Wildey et al. proposed a
positioning method based on three points, but their ap-
proach had a smaller measurement range (0◦–5◦).

Both analytical and iterative solutions have their
scopes of application and disadvantages. Compared with
iterative solutions, analytical solutions generally take
less computation time for the same accuracy. On the
other hand, analytical solutions are extremely suscepti-
ble to noise. Non-linear optimization problems are nor-
mally solved with variation on gradient descent or Gauss–
Newton methods. Iterative solutions have drawbacks,
namely, they need ideal initial values of the true solu-
tion, and they are time-consuming.

Given these considerations, a two-step method for pose

estimation based on five co-planar reference points is
studied in this letter. In the first step, the pose of the
object is estimated by a simple analytical solving process.
The pixel coordinates of the reference points on the im-
age plane are extracted through image processing. Then,
by utilizing affine invariants of the reference points with
certain distances between each other, the coordinates of
the reference points in the camera coordinate system are
solved. In the second step, the results obtained in the
first step are used as the initial values of an iterative
process for gathering the exact solution. In such a solu-
tion, an unconstrained nonlinear optimization objective
function is established through the objective functions
produced by the depth estimation and the co-planarity
of the five reference points to ensure the accuracy and
convergence rate of the non-linear algorithm. Then, the
Levenberg–Marquardt optimization method is utilized to
refine the initial values. The coordinates of the reference
points in the camera coordinate system are obtained and
transformed into the pose of the object. The advantages
of the two-step method are as follows. It improves the
linear method in the situation wherein the method is ex-
tremely susceptible to noise; and it yields a preferable
initial value to the iterative process in the second step.
The proposed algorithm processes each image frame sep-
arately unlike in Ref. [18], thereby eliminating the accu-
mulation of calculation errors.

A target pattern with five reference points is designed
for pose estimation, as shown in Fig. 1. The No. 0, No.
1, and No. 2 points are on the same straight line. The
No. 3 and No. 4 points can be distinguished according to
the distance between the point and the straight line. The
No. 2 point is farthest from the straight line composed
of No. 3 and No. 4 points. The No. 0 and No. 1 points
could be distinguished according to their distances from
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Fig. 1. Measurement target with five feature points.

Fig. 2. Perspective projection model with five points.

No. 2. The No. 4 point is set as the origin of the coordi-
nate system, and the connection line between No. 4 and
No. 3 points is in the y-axis direction of the coordinate
system. The direction parallel to the connection line be-
tween No. 2 and No. 0 points, starting from the No. 4
point, is the x-axis direction. The z-axis is determined
in accordance with the principle of the right hand. In
this setup, the world coordinate system (target coordi-
nate system) is constructed.

To achieve the solution to the object pose, the coordi-
nates of reference points in the camera coordinate system
must be solved firstly. The perspective projection model
with five reference points is shown in Fig. 2. oc− xcyczc

is the camera coordinate system, which denotes the cam-
era frame. uv is the CCD image plane, with the original
point at the image center of the CCD plane.

The intrinsic parameters of the camera, which include
the focus of the lens f , the radial distortion coefficients of
camera lens k1 and k2, the tangential distortions p1 and
p2, the center pixels of the computer image u0 and v0,
and the uncertainty image factor sx, could be obtained
through camera calibration according to the calibration
method presented by Zhang et al. dx and dy are center-
to-center distances between pixels in the row and column
directions, respectively. On account of the radial distor-
tion and tangential distortion of the lens, the undistorted
coordinate point on the image plane could be obtained by
the transformation formula of the ideal and actual image
coordinates.

The coordinates of reference points in the camera co-
ordinate system are represented by Pci = (xci, yci, zci),
and those in the world coordinate system follow Pwi =
(xwi, ywi, zwi). The corresponding ideal image coordi-
nates are as follows: Iui=(xui, yui, 1)T(i=0· · · 4). The

relationship of Pci and Iui could be described as



zciIui =

[
sxf/dx 0 u0

0 f/dy v0

0 0 1

]

Pci =

[
fx 0 u0

0 fy v0

0 0 1

]
Pci = KPci

Pci = λiK−1Iui(λi = zci)

. (1)

The coordinates of the reference points in the camera co-
ordinate system could be obtained by solving for λi.−−−→

P1P4 is parallel to
−−−→
P2P3. Thus, two affine invariants

are introduced as



k =‖ Pw4 −Pw1 ‖ / ‖ Pw3 −Pw2 ‖
Pw4 = k(Pw3 −Pw2) + Pw1

= [Pw1, Pw2, Pw3] [1, −k, k]T
. (2)

The transformation from the world coordinate system to
the camera coordinate system is an affine transforma-
tion; thus, we have

Pc4 = k(Pc3 −Pc2) + Pc1 = [Pc1,Pc2,Pc3] [1,−k, k]T.
(3)

Given Pc = [Pc1,Pc2,Pc3], P−1
c P4c could be repre-

sented by



Pc =[Pc1,Pc2,Pc3]
= K−1diag(λ1, λ2, λ3)[Iu1, Iu2, Iu3]

P−1
c P4c =diag(1/λ1, 1/λ2, 1/λ3)[Iu1, Iu2, Iu3]−1

K(λ4K−1Iu4) = diag(λ4/λ1, λ4/λ2, λ4/λ3)
·[Iu1, Iu2, Iu3]−1Iu4.

. (4)

Given [η1, η2, η3] = [Iu1,−Iu2, Iu3]−1Iu4, Eq. (5) is a
derivate.

P−1
c Pc4 = diag(λ4/λ1, λ4/λ2, λ4/λ3)[η1,−η2, η3]. (5)

According to Eqs. (3) and (5), the distance between
each pair of reference points is known by referring to the
world coordinate system constructed above, and the im-
age coordinates of reference points are extracted through
image processing. Thus, λi, which represents the depth
information of every reference point, could be calculated
as 




λ1 = η1λ4, λ2 = η2λ4/k, λ3 = η3λ4/k

λ4 = η4λ4(η4 = 1)
k =‖ Pw4 −Pw1 ‖ / ‖ Pw3 −Pw2 ‖
‖ Pw3 −Pw2 ‖=‖ Pc3 −Pc2 ‖

= λ4 ‖ η3K−1Iu3/k − η2K−1Iu2/k ‖

. (6)

The vector from the optical center Oc to each reference
point could be calculated through




−−−→
OcPci = ηiK−1Iui ‖ Pw4 −Pw1 ‖
/ ‖ η3K−1Iu3 − η2K−1Iu2 ‖ (i = 1, 4)
−−−→
OcPci = ηiK−1Iui ‖ Pw3 −Pw2 ‖
/ ‖ η3K−1Iu3 − η2K−1Iu2 ‖ (i = 2, 3)

. (7)

With the results of λi(i=1, 2, 3, 4), the equation of the
target plane πTX = 0(π = [π1, π2, π3, π4]T) could be
constructed.

On the basis of the results of λi (i=1, 2, 3, 4), the ro-
tation and translation matrix from the target coordinate

071501-2



COL 10(7), 071501(2012) CHINESE OPTICS LETTERS July 10, 2012

system to the camera coordinate system could be solved
by





R1 =
−−−→
OcPc2 −−−−→OcPc1/ ‖ −−−→OcPc2 −−−−→OcPc1 ‖

R2 =
−−−→
OcPc3 −−−−→OcPc4/ ‖ −−−→OcPc3 −−−−→OcPc4 ‖

R3 = [π1/r, π2/r, π3/r], r =
√

π2
1 + π2

2 + π2
3

R =




R1x R1y R1z 0
R2x R2y R2z 0
R3x R3y R3z 0
0 0 0 1




T =




1 0 0 −Pc4x

0 1 0 −Pc4y

0 0 1 −Pc4z

0 0 0 1




Pw0 = λ0K−1Iu0 = R ·T ·Pc0

, (8)

and depth information λ0 of reference point P0 could be
obtained through the rotation and translation matrix.

As can be seen in Fig. 2, the spatial geometric model
of the figure enclosed by the connective lines of five ref-
erence points is known according to the world coordinate
system constructed before. The geometric figure includes
10 triangles, and each triangle has three sides. Accord-
ing to the vector from the optical center to the reference
point each side of the triangle could be expressed as

E1(i, j) = λ2
i ‖ K−1−−−→OcIui ‖2 +λ2

j ‖ K−1−−−→OcIuj ‖2

−2λiλj(K−1−−−→OcIui) · (K−1−−−→OcIuj)− ‖ −−−−−→PwjPwi ‖2 .
(9)

A total of 10 distance constraints exist aggregately.
Each triangle has three angles, and every four points

can make up three pairs of vectors. Each pair of vectors
could also constitute an angle. These angles are denoted
by





E2(i, j, l) = (λjK−1−−−→OcIuj − λiK−1−−−→OcIui)

·(λlK−1−−−→OcIul − λjK−1−−−→OcIuj)

/ ‖ λjK−1−−−→OcIuj − λiK−1−−−→OcIui ‖
· ‖ λlK−1−−−→OcIul − λjK−1−−−→OcIuj ‖ − cos θ1

E3(i, j, l, n) = (λjK−1−−−→OcIuj − λiK−1−−−→OcIui)

·(λlK−1−−−→OcIul − λnK−1−−−→OcIun)

/ ‖ λjK−1−−−→OcIuj − λiK−1−−−→OcIui ‖
· ‖ λlK−1−−−→OcIul − λnK−1−−−→OcIun ‖ − cos θ2

. (10)

A total of 45 angle constraints exist aggregately.
However, considering the distance and angle errors is

not enough. To further ensure the shape of the geomet-
ric figure (i.e., preserve the rigidity of the target), other
constraints need to be considered, namely, when each
triangle makes up a plane, and when the remaining two
points and the triangle are on the same plane.

E4(i, j, l, n) = [(λjK−1−−−→OcIuj − λiK−1−−−→OcIui)

· (λlK−1−−−→OcIul − λiK−1−−−→OcIui)]

· (λnK−1−−−→OcIun − λiK−1−−−→OcIui). (11)

The objective function F is constructed through Eqs.
(9) and (10) as

min F =
∑

E1(i, j)+
∑

E2(i, j, l)+
∑

E3(i, j, l, n).
(12)

A penalty factor M is applied for the objective function
E4(i, j, l, n), which converges significantly faster than the
objective functions E1(i, j), E2(i, j, l), and E3(i, j, l, n).
By multiplying the objective function E4(i, j, l, n) with
M , which controls the co-planarity error of the five ref-
erence points, the unconstrained nonlinear optimization
objective function of λi is built, where i = 0, 1, 2, 3, 4.
The Levenberg–Marquardt optimization method is used
to solve for λi.

F =
4∑

i=0

4∑

j=i+1

E1(i, j) +
4∑

i=0

4∑
j=i+1
l6=i, j

E2(i, j, l)

+
4∑

i=0

4∑
j = i + 1
l 6= i, j

n 6= i, j, l

E3(i, j, l, n)+M ·
4∑

i=0

4∑
j = i + 1
l 6= i, j

n 6= i, j, l

E4(i, j, l, n).

(13)

The 3D coordinates of the reference points can be ob-
tained by applying Eq. (13) iteratively along until λi is
stable and provides reasonable initial values of λi, which
are acquired in the analytical solving process to ensure
the accuracy and convergence speed of the nonlinear al-
gorithm.

As shown in Fig. 3, the pose of the target from position
1 to position 2 is (R,T). According to the definition of
the rotation and translation matrix, we deduce

−−−−→
P 2

ciP
2
cj = R ·

−−−−→
P 1

ciP
1
cj . (14)

−−−−→
P 1

ciP
1
cj and

−−−−→
P 2

ciP
2
cj confirm a 3×3 orthonormal matrix,

respectively, and R is confirmed through these two or-
thonormal matrixes (the product of two orthonormal ma-
trixes is still an orthonormal matrix, thereby ensuring the
orthonormality of R). The solving process is shown as





−→
h1 = λ2K−1−−−→OcIu2 − λ1K−1−−−→OcIu0

/ ‖ λ2K−1−−−→OcIu2 − λ1K−1−−−→OcIu0 ‖
−→
h2 = λ3K−1−−−→OcIu3 − λ4K−1−−−→OcIu4

/ ‖ λ3K−1−−−→OcIu3 − λ4K−1−−−→OcIu4 ‖
−→
h3 =

−→
h1 ×−→h2

SA1 =
[−−→
hA1

1

−−→
hA1

2

−−→
hA1

3

]

SA2 =
[−−→
hA2

1

−−→
hA2

2

−−→
hA2

3

]

R = S−1
A1 · SA2

T = P 2
ci −R · P 1

ci

. (15)

Considering that the experiment system is a three-axis
stage, and the three axes do not usually intersect at a
point, the measurement model should be constructed for
such a situation, as shown in Fig. 3.
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Fig. 3. Measurement model of the three-axis turntable.

   

Fig. 4. Schematic diagram of the experimental system.

Figure 4 shows the experimental system, which con-
sists of a target, a rotation and translation stage, two
CCD cameras, and a computer. Images in the different
locations are captured with a single CCD camera, and
the pose of the target could be obtained by comparing
the image in the current location with that in the initial
location (zero location).

This work used Teli CSB4000F-20, with resolution of
2008 (h)×2044 (v) and pixel size of 0.006×0.006 (mm).
The lens is a Pentax 25 mm. The rotation range of
the stage is electronically controlled in the azimuth axis,
pitching axis, and roll axis (±160◦, ±80◦, and ±45◦,
respectively). The positioning accuracy is less than 20.
The calibration results of the intrinsic parameters of the
camera are shown in Table 1.

The target pose measurement experiment is divided
into two parts, namely, the digital simulation experi-
ment and the practical measurement experiment.

To validate accuracy and noise immunity of the method
in the present article, the proposed method is compared
with the least squares method in Ref. [15] and the POSIT
method in Ref. [13] during the digital simulation experi-
ment process. In this process, the pinhole imaging model
of the camera is simulated; thus, the reference points
are transformed with perspective projection, and the
simulated image coordinates of the reference points are
acquired. By adding random Gaussian noises of different
intensities to the image coordinates, the target pose is
calculated using the proposed algorithm, the POSIT al-
gorithm, and the least-squares algorithm. The results
of the actual and calculation values, which represent the
noise immunity ability of the algorithm, are shown in

Fig. 5(a).
With the 5◦ interval, the 3-axis turntable takes the tar-

get to rotate at the three degrees of freedom (azimuth,
pitch, and roll). The CCD camera captures an image at
each location. The angle between the current position
and the initial position (zero position) is calculated ac-
cording to parts 2 and 3. The measuring range of the

Table 1. Calibration Results

Parameter fx fy cx cy

Camera1 4366.406 4366.174 998.898 1005.258

Camera2 4379.274 4379.074 1013.002 1022.227

Parameter k1 k2 p1 p2

Camera1 −0.380 0.281 0.00179 0.00019

Camera2 −0.374 0.161 0.00146 −0.00006

Fig. 5. Contrast experimental results.

Table 2. Measurement Results of the Azimuth
Angle

Serial No.

Angle between Location i
Position of and Location 0 (dey.)

Target (dey.) Actual
Error (dey.)

Relative
Value (dey.) Error (%)

0 0
1 5 5.052 0.052 1.04
2 10 10.109 0.109 1.09
3 15 15.082 0.082 0.55
4 20 19.982 −0.018 −0.09
5 25 24.977 −0.023 −0.09
6 30 30.001 0.001 0.003
7 35 35.062 0.062 0.18
8 40 40.061 0.061 0.15
9 45 45.084 0.084 0.19
10 50 50.072 0.072 0.14
11 55 55.045 0.045 0.08
12 60 59.992 −0.008 −0.01
13 65 64.919 −0.081 −0.12
14 70 69.879 −0.121 −0.17
15 75 74.932 −0.068 −0.09
16 80 79.892 −0.108 −0.14
17 85 84.919 −0.081 −0.10
18 90 89.895 −0.105 −0.12
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Table 3. Measurement Results of the Pitch Angle

Serial No.

Angle between Location i

Position of and Location 0 (dey.)

Target (dey.) Actual
Error (dey.)

Relative

Value (dey.) Error (%)

0 0

1 5 4.994 −0.006 −0.12

2 10 10.006 0.006 0.06

3 15 14.953 −0.047 −0.31

4 20 19.932 −0.068 −0.34

5 25 24.946 −0.054 −0.22

6 30 29.964 −0.036 −0.12

7 35 34.999 −0.001 −0.003

8 40 39.967 −0.033 −0.08

9 45 44.930 −0.070 −0.16

10 50 49.922 −0.078 −0.16

11 55 54.959 −0.041 −0.07

12 60 60.035 0.035 0.06

Table 4. Measurement Results of the Roll Angle

Serial No.

Angle between Location i

Position of and Location 0 (dey.)

Target (dey.) Actual
Error (dey.)

Relative

Value (dey.) Error (%)

0 0

1 5 5.013 0.013 0.26

2 10 10.034 0.034 0.34

3 15 15.045 0.045 0.30

4 20 20.063 0.063 0.32

5 25 25.079 0.079 0.32

6 30 30.099 0.099 0.33

7 35 35.115 0.115 0.38

8 40 40.049 0.049 0.12

9 45 45.009 0.009 0.02

10 50 50.011 0.011 0.02

11 55 55.016 0.016 0.03

12 60 60.021 0.021 0.04

azimuth angle is set to 0◦–90◦; the measuring range of
the pitch angle is set to 0◦–60◦; the measurement range
of the roll angle is set to 0◦–60◦. The results are shown
in Table 2 (azimuth angle with RMS of 0.076◦), Table
3 (pitch angle with RMS of 0.035◦), and Table 4 (roll
angle with RMS of 0.036◦). The contrast experiments of
the practical measurement of three methods are shown
in Fig. 5(b). As shown in Fig. 5(c), if the pose is solved
directly through the establishment of the objective func-
tion, the initial value for the pose is set as 0 (curve 1),
and the final results (curve 3) are obtained through some
iterations. When the present method is used, the initial
value (curve 2) for the pose is solved with the analytical
solution, then the final results (curve 3) are achieved

through the establishment of the objective function with
less iterations. Curve 2 is closer to curve 3 than to curve
1, and the first step (the analytical solution process) is
easy to implement. Thus, the amount of iterations and
calculation can be greatly reduced.

In conclusion, we present a two-step method for pose
estimation based on five co-planar reference points. Ex-
perimental results show that the RMS of the azimuth
angle reaches 0.076◦ in the measurement range of 0◦–
90◦; the RMS of the pitch angle reaches 0.035◦ in the
measurement range of 0◦–60◦; and the RMS of the roll
angle reaches 0.036◦ in the measurement range of 0◦–60◦.

This work was supported by the Important National
Science & Technology Specific Project (No.2009ZX04014-
092).
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